Python代写 | ECE 520.438 & 520.638: Deep Learning

本次Python代写用深度学习来扩展YaleB数据集的图像样本

ECE 520.438 & 520.638: Deep Learning

1 Part 1
Answer the following questions.
1. What do we mean by hand-crafted features? Give at least three examples of handcrafted features.
2. What do we mean by learned features? Give at least three examples of leanred
features.
3. Briefly discss some of the advantages and disadvantages of hand-crafted features compared to learned features.
4. What are two ways in which one can formulate PCA?
5. The LDA reduces dimensionality from the original number of features to how many
features?
6. What some of the limitations of LDA?
7. Give two drawbacks of PCA.
8. Many features in computer vision are represented in terms of histograms. Given two
histograms, what are some distance metrics that we can use to compare them? Give
at least three examples.
9. Why does `0-norm capture sparsity?
10. Why do we use `1-norm to approximate `0-norm?
11. What are some disadvantages of k-means clustering?
12. What is the di↵erence between Nearest Neighbor algorithm and k-Nearest Neighbor
algoritm?
13. Breifly describe how visual bag of words features are extracted.
14. Briefly describe cross-validation.
15. What is the di↵erence between sparse coding and dictionary learning?
2 Part 2
In this excercise, you will implement and evaluate the k-Nearest Neighbor algorithm that
we studied in class.
Grading: You will be graded based on the code you develop, plus your homework report
summarizing your findings. If possible, please write your report using LaTeX.
2.1 Extended YaleB dataset
1. The original images in the Extended YaleB dataset have been cropped and resized
to 32 ⇥ 32. This dataset has 38 individuals and around 64 near frontal images under
di↵erent illuminations per individual. Sample images from this dataset are shown
in Figure 1. Download the file YaleB-32×32.mat from the course locker. This file
contains variables ‘fea’ and ‘gnd’. Each row of ‘fea’ is a face and ‘gnd’ is the label.
Randomly select (m = 10, 20, 30, 40, 50) images per individual with labels to form the
training set, and use the remaining images in the dataset as the test set. Apply the
k-NN algorithm (with k = 1) on each of these five splits and record the corresponding
classification errors. Use the Euclidean distance metric, i.e., d(x, y) = kx yk2. The
classification error rate, E is defined as follows
E =
Pn
i=1 1[ˆl(xi) 6= l(xi)]
n
⇥ 100,
where n is the number of test samples, ˆl(xi) is the classification of the ith observation
from the test, and l(xi) is the true class of that observation. Plot the Classification
Error Rate vs Number of Trainings Samples curves on a single figure. Summarize
your findings.
Figure 1: Samples images from the Extended YaleB dataset.
2. Repeat the above procedure for k = 2, 3, 5, 10 and plot the error rate E against k.
Does the error rate decreases with k? Should the error rate always decrease with k?
Plot the k nearest neighbors of some of misclassified samples.
3. Let k = 3 and select m = 30 images per individual with labels to form the traiing
set and use the remaining images in the dataset as the test set. Replace the distance
metric with kx ykp, p = 1, 3, 5, 10 and plot the error rate against p. Does the
distance metric e↵ect the error rate?
4. Instead of using the pixel intensities as features, extract the LBP and HOG features
from the images. Repeat step 3 with p = 1, 2. What are the error rates corresponding
to pixel intensities, LBP and HOG features?
5. What is the lowest error rate you achieved in this exercise?
2.2 Validation set
Randomly sample 20 images per individual to form a test set. Use the remaining data to
form the training set. Appropriately further divide the training set into a new training set
and a validation set. Use the validation set to optimize the parameters (i.e k and p) of the
k-NN algorithm. Please use the pixel intensities for conducting experiments in this exercise.
What is the lowest error rate you achieved in this exercise? What are the corresponding
values for k and p?


程序代写代做C/C++/JAVA/安卓/PYTHON/留学生/PHP/APP开发/MATLAB


blank

本网站支持淘宝 支付宝 微信支付  paypal等等交易。如果不放心可以用淘宝交易!

E-mail: itcsdx@outlook.com  微信:itcsdx


如果您使用手机请先保存二维码,微信识别。如果用电脑,直接掏出手机果断扫描。

blank

发表评论